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10.1. Unique solution

Let k > 0. Let D be a bounded planar domain in R2. Let u = u(x, y) be a solution
to the Dirichlet problem for the reduced Helmholtz energy in D. That is, let u solve{

∆u(x, y) − ku(x, y) = 0, for (x, y) ∈ D,
u(x, y) = g(x, y), for (x, y) ∈ ∂D.

Show that there exists at most a unique solution twice differentiable in D and
continuous in D, that is, u ∈ C2(D) ∩ C(D).

Hint: Assume that there exist two solutions u1 and u2, and consider the difference
v = u1 − u2.

SOL:

Let us use the hint. Let us suppose that there exist two solutions u1 and u2 fulfilling
the Dirichlet problem. Let v = u1 − u2. Notice that v = v(x, y) solves{

∆v(x, y) − kv(x, y) = 0, for (x, y) ∈ D,
v(x, y) = 0, for (x, y) ∈ ∂D.

We just need to prove that v ≡ 0 in D. To do so, we will show that maxD v =
minD v = 0. We show both equalities by contradiction.

Notice that maxD v ≥ 0, since v = 0 on ∂D. Let us suppose that maxD v = M > 0.
In particular, there exists some (x◦, y◦) ∈ D such that v(x◦, y◦) = M > 0, that is, v
has a maximum at (x◦, y◦). In particular, we know that ∆v(x◦, y◦) ≤ 0. Therefore,

0 = ∆v(x◦, y◦) − kv(x◦, y◦) ≤ −kM < 0,

a contradiction.

On the other hand, minD v ≤ 0, since v = 0 on ∂D. Let us suppose that minD v =
m < 0. In particular, there exists some (x◦, y◦) ∈ D such that v(x◦, y◦) = m < 0,
that is, v has a minimum at (x◦, y◦). In particular, we know that ∆v(x◦, y◦) ≥ 0.
Therefore,

0 = ∆v(x◦, y◦) − kv(x◦, y◦) ≥ −km > 0,

a contradiction. Therefore, if there exists a solution, is unique.

10.2. The mean-value principle Let D be a planar domain, and let BR((x◦, y◦))
(ball of radius R centered at (x◦, y◦)) be fully contained in D. Let u be an harmonic
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function in D, ∆u = 0 in D. Then, the mean-value principle says that the value of u
at (x◦, y◦) is the average value of u on ∂BR((x◦, y◦)). That is,

u(x◦, y◦) = 1
2πR

∮
∂BR((x◦,y◦))

u(x(s), y(s)) ds = 1
2π

∫ 2π

0
u(x◦ + R cos θ, y◦ + R sin θ) dθ.

Show that u(x◦, y◦) is also equal to the average of u in BR((x◦, y◦)), that is,

u(x◦, y◦) = 1
πR2

∫
BR((x◦,y◦))

u(x, y) dx dy.

SOL:

Let us use polar coordinates to compute

1
πR2

∫
BR((x◦,y◦))

u(x, y) dx dy = 1
πR2

∫ R

0

∫ 2π

0
u(x◦ + r cos θ, y◦ + r sin θ)r dθ dr

= 1
πR2

∫ R

0
r

(∫ 2π

0
u(x◦ + r cos θ, y◦ + r sin θ) dθ

)
dr

= 1
πR2

∫ R

0
2πru(x◦, y◦) dr

= u(x◦, y◦)
1

πR2 [πr2]R0
= u(x◦, y◦).

We have used here the boundary mean value principle in the balls Br((x◦, y◦)) for
each r ∈ (0, R).

10.3. Maximum principle Consider the disk D :=
{
(x, y) ∈ R2 :

√
x2 + y2 < 1

}
.

Let u = u(x, y) be a function twice differentiable in D and continuous in D̄, solving∆u(x, y) = 0, in D,

u(x, y) = g(x, y), on ∂D,

for some given function g.

(a) Suppose g(x, y) = x2 + 2√
2y. Compute u(0, 0) and max(x,y)∈D̄ u(x, y).

(b) Suppose now that g is any smooth function such that g(x, y) ≥ (3x − y). Show
that u(1/3, 0) ≥ 1, with equality if and only if g(x, y) = 3x − y.

Hint: the function 3x − y is harmonic.

SOL:
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(a) By the mean value property

u(0, 0) = 1
2π

∫
∂D

g dl = 1
2π

∫ 2π

0
cos(θ)2 + 2√

2
sin(θ) dθ = π

2π
= 1

2 .

By the Maximum Principle

max
D̄

u = max
∂D

u = max
∂D

g = max
θ∈[0,2π)

{cos(θ)2 + 2√
2

sin(θ)}.

Setting g(θ) = cos2(θ) + 2√
2 sin(θ), we have that (up to periodicity)

g′(θ) = cos(θ)( 2√
2

− 2 sin(θ)) = 0,

if and only if θ ∈ {π
2 , 3π

2 , π
4 , 3π

4 }. A quick check shows that maxθ g(θ) = g(π/4) = 3
2 .

(b) It is convenient to set the auxiliary function w := u − 3x + y. Then∆w = 0, in D

w = g − (3x − y) ≥ 0, on ∂D,

by the very assumption on g. Applying the Maximum Principle to w, we get that

min
D̄

(u − (3x − y)) = min
D̄

w = min
∂D

w ≥ 0,

implying that u(x, y) ≥ 3x − y in D̄. In particular,

u(1/3, 0) ≥ 3 · 1
3 = 1.

If u(1/3, 0) = 1, then w attains its minimum in D since w(1/3, 0) = u(1/3, 0) − 1 = 0.
This implies by the strong maximum principle that w ≡ 0, and hence u(x, y) = 3x−y.
In particular, g(x, y) = u(x, y) = 3x − y on ∂D. This shows the ’only if’ direction.
The ’if’ direction is a consequence of uniqueness of solution of the Laplace equations
with Dirichlet boundary condition on w.
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10.4. Multiple choice Cross the correct answer(s).

(a) Consider the Neumann problem for the Poisson equation∆u = ρ, in D,

∂νu = g, on ∂D,

where D = B(0, R) is the ball of radius R > 0 with centre in the origin of R2, and ρ
and g are given in polar coordinates (r, θ) by

ρ(r, θ) = rα sin2(θ), and g(r, θ) = C cos2(θ) + r2021 sin(θ),

for some constants α > 0 and C > 0. For which values of C > 0 does the problem
satisfy the Neumann’s necessary condition for existence of solutions?

X C = Rα+1

α+2

⃝ C = Rα+1

α+1

⃝ C = Rα+2

α+2

⃝ C = Rα+1

α−1

SOL: We say that the Neumann Problem for the Poisson equation satisfies the
necessary condition for existence of solutions if the identity∫

∂D
g =

∫
D

ρ, (1)

holds. In our particular case we can compute in polar coordinates∫
D

ρ =
∫ R

0
r

∫ 2π

0
rα sin2(θ) dθ dr = π

Rα+2

α + 2 ,

and parametrizing ∂D with the curve θ 7→ (R cos(θ), R sin(θ)) we have that∫
∂D

g =
∫ 2π

0
R

(
C cos2(θ) + R2021 sin(θ)

)
dθ = RCπ.

Plugging this in Equation (1) we obtain that the identity

RCπ = π
Rα+2

α + 2 ,

is valid if and only if C = Rα+1

α+2 .

(b) Consider the Dirichlet problem∆u = 0, in D,

u = x
x2+y2 on ∂D,

where the domain D is the anulus defined by D :=
{

(x, y) ∈ R2 : 1 <
√

x2 + y2 < 2
}

.
What is the maximum of u?
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⃝ 1
2

X 1

⃝ 1
4

⃝ −1

SOL: By the weak maximum principle, maxD̄ u = max∂D u = max∂D
x

x2+y2 . Writing
∂D = {x2 +y2 = 1}∪{x2 +y2 = 4} =: S1 ∪S2, we check that maxS1 u = maxS1 x = 1,
and maxS2 u = maxS2

x
4 = 1

2 . Hence max∂D u = max{1, 1
2} = 1.

Extra exercises

10.5. Weak maximum principle Let B1 denote the unit ball in R2 centered at
the origin, and let u = u(x, y) be twice differentiable in B1 and continuous in B1.
Suppose that u solves the Dirichlet problem{

∆u(x, y) = −1, for (x, y) ∈ B1,
u(x, y) = g(x, y), for (x, y) ∈ ∂B1.

Show that
max

B̄1
u ≤ 1

2 + max
∂B1

g.

Hint: search for a simple function w such that ∆w = 1, and use it to reduce the
problem to an application of the weak maximum principle for harmonic functions.

SOL:

We just need to find a function w(x, y) such that ∆w(x, y) = 1, and then consider
v(x, y) = u(x, y) + w(x, y). The simplest function such that ∆w(x, y) = 1 is w(x, y) =
1
2x2. Thus, let us define

v(x, y) = u(x, y) + 1
2x2.

Then, v solves {
∆v(x, y) = 0, for (x, y) ∈ B1,

v(x, y) = g(x, y) + 1
2x2, for (x, y) ∈ ∂B1.

By the weak maximum principle, we know that

max
B̄1

v(x, y) = max
∂B1

(
g(x, y) + 1

2x2
)

≤ max
∂B1

g(x, y) + max
∂B1

1
2x2.

Notice that max∂B1
1
2x2 = 1

2 , so

max
B̄1

v(x, y) ≤ 1
2 + max

∂B1
g(x, y).
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On the other hand, v(x, y) ≥ u(x, y) for all x, y ∈ B1, so

max
B̄1

u(x, y) ≤ max
B̄1

v(x, y) ≤ 1
2 + max

∂B1
g(x, y),

as we wanted to see.
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